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On the position-space renormalisation group approach to 
diffusion-limited cluster growth problems 
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Department of Chemical Engineering and Materials Science, University of Minnesota, 
Minneapolis, Minnesota 55455, USA 

Received 1 June 1983 

Abstract. We investigate the application of position-space renormalisation group methods 
to the Witten-Sander model of diffusion-limited cluster growth. We show that this method 
cannot be used to investigate the asymptotic behaviour of the Witten-Sander model in 
three and higher dimensions, even though it yields satisfactory results in two dimensions 
with small cells. 

A wide variety of problems such as the growth of crystals from an undercooled melt 
or a supersaturated solution (for a review see Langer (1980) and references therein), 
coagulation of smoke particles (Forrest and Witten 1979), growth of tumours (Williams 
and Bjerknes 1972) and turbulence (Hentschel and Procaccia 1982) have a common 
root in the physical mechanisms that govern the structure of randomly branched 
clusters. Most of these processes are governed by diffusion and surface tension. 
Surface tension favours compact clusters, i.e. clusters that fill their surrounding space, 
with a minimum area to volume ratio. On the other hand, because surface sites deep 
inside the cluster are connected to the surrounding environment by narrow paths, 
they are screened. Thus the rate of growth of the cluster at such sites is reduced. 

The recent popularity of the study of the kinetics of formation of randomly branched 
clusters is largely due to the paper by Witten and Sander (1981). In their model the 
initial state at time t = 1 is a seed particle located at the centre of a large hypersphere. 
A second particle is released at the surface of this sphere at time t = 2. The particle 
then performs a random walk until it reaches a site adjacent to the seed site, where 
it stops its random walk and joins the cluster. The process of releasing the particles 
on the surface of the sphere is continued until a large cluster of occupied sites is 
formed. Witten and Sander (1981) performed computer simulations of such a cluster 
growth process on a lattice, and by ignoring surface tension and treating the random 
walk (diffusion) on the lattice exactly, showed that the resulting clusters are extremely 
branched. A fundamental measure of the structure of a randomly formed cluster is 
the manner in which R, the linear dimension of the cluster, scales with n, the total 
number of particles in the cluster. If 

R -nu, (1) 
then D = 1 /v  is the Hausdorff or fractal dimensionality of the cluster (see Mandelbrot 
1982). Witten and Sander called this growth process a new kind of critical phenomenon, 
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mainly because the densitydensity correlation function 

c ( r ) = n - ’ C p ( r ’ ) p ( r + r ’ )  (2) 
r ’  

seems to obey a power-law relationship, 

C ( T ) - - T - = ,  (3) 
similar to usual critical phenomena. Here cy and D are related through D = d -a. 
Meakin (1983) has studied the Witten-Sander (ws) model extensively by computer 
simulations. He has found that the ratio D/d,  where d is the Euclidean dimensionality, 
is a superuniversal value, i.e. its value is independent of dimension and details of the 
lattice, and is close to 2 for d = 2-6. However, his results for three- and higher- 
dimensional systems are not conclusive since they contain large statistical uncertainties. 
Muthukumar (1983) has developed mean-field theory for the w6 model which predicts 
that D = (d2+ l ) / (d  + 1). This formula yields results which are in  good agreement 
with the computer simulation results of Meakin (1983). Rosenstock and Marquardt 
(1980) developed upper and lower limits on the rate of cluster growth in the ws 
model by using concepts from random-walk theory. 

Computer simulations have been the major tool in studying the formation of 
randomly branched clusters. However, one may also study these models by renormali- 
sation group approach. Because a Hamiltonian formulation of these processes is not 
available, and because it appears that the ws model does not have an upper critical 
dimensionality (Witten and Sander 1983), a momentum-space renormalisation group 
approach and E expansion ( E  =d,-d, where d, is the upper critical dimensionality) 
is not possible. Very recently Gould er a1 (1983) developed a position-space renormali- 
sation group (PSRG) approach to study the ws model. They studied this model in two 
dimensions and showed that it is in a different universality class from the lattice 
animals. One might hope that this method can be used to study the ws model in 
three- and higher-dimensional systems to obtain accurate estimates of D. In this letter 
we explore the applicability of this method to the study of the ws model in three and 
higher dimensions. 

The PSRG treatment of the ws model is a two-parameter model. A fugacity S is 
associated with each occupied site of the cell, and another fugacity W is assigned to 
each step of the random walk of the added particle. Thus the recursion relation for 
S’ ,  the renormalised site occupation fugacity, is written as (Gould et a1 1983) 

S’ = cs,ss w‘ 
5.1 

(4) 

where C,, is the number of different ways of growing a spanning cluster of s sites 
generated by random walks with total number of steps t. This is somewhat similar to 
the PSRG treatment of lattice animals (Family 1980, 1983). One has to develop also 
a recursion relation for W’, the fugacity of a single-step random walk on the renor- 
malised lattice. This relation is of the form 

W‘ = b,W”, 
m 

where b, is the total number of walks of m steps that span the cell in a given direction. 
For dimensions d 5 2 equation ( 5 )  cannot be determined exactly, even for the smallest 
cell, because there are an infinite number of spanning walks that exist for a finite cell 
and thus contribute to ( 5 ) .  
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In an attempt to circumvent this difficulty, Family and Gould (1983) developed a 
PSRG procedure that avoids this difficulty. They noted that after a larger number n 
of random walk steps is taken, the length 5 of the random walk obeys the equation 

5 - n ’ ”  (6 )  

since the random walk would be diffusive. Thus at the critical fugacity W* (i.e. in 
the limit n + CO), only those random walks whose number of steps obey (6) contribute 
significantly to (5). Thus the summation in ( 5 )  is restricted to spanning random walks 
whose number of steps n satisfies the relation n 6 t2, where 5 is the end-to-end length 
of the walk on the cell. Our procedure for calculation of W’ is somewhat different 
from that of Family and Gould (1983) in that we enumerate longer walks (see below) 
and thus obtain a better approximation to v. 

In figure 1 we show the smallest cell that we used in two dimensions. The seed 
particle is located at A, and another particle can enter the cell from the ‘north’ or 
‘east’. For a cell of this type on a d-dimensional simple cubic lattice, with linear 
dimension b we enumerate walks with up to 5’ = (d - l ) (b  - 1)* + b 2  steps. Thus for 
b = 2 we have 

S’ = 6 S 3  W2(1 + 2  W)+8S4W3(1 + 2 W) (7) 

W ’ =  w 2 + 2 w 3 + 5 w 4 + 1 4 w s .  (8) 

Figure 1. The smallest ( 6  = 2 J  cell used in the PSRG treatment of the Witten-Sander 
model in two dimensions. A denotes the seed particle. 

Equations (7) and (8) have the fixed points S = S* and W = W*. Thus the fractal 
dimensionality of the ws model is given by 

D =In A/ln b (9) 
where A is the eigenvalue of the linearised transformation S’, i.e. A = W/aS evaluated 
at S = S* and W = W*. One may also define a cell-to-cell transformation (Reynolds 
et a1 1978) in which an implicit transformation from a cell of size b to a cell of size 
b’ is constructed. One may interpret this as an infinitesimal transformation whose 
results will improve as b/b ’ + 1, in contrast to the cell-to-site (or bond) transformation 
whose results are expected to improve with increasing cell size. We have used cells 
of, up to b = 4 in two dimensions and the results are displayed in table 1. The results 
agree very well with the Monte Carlo result of Meakin (1983), D = 1.67. 

We note that equation (5)  describes the PSRG treatment of an unbiased, nearest- 
neighbour random walk on a lattice. Because such a walk is Markovian, 
the fractal dimensionality of the walk is D R W  = 2 ,  independent of the dimension. The 
inverse p, of the ‘critical’ fugacity W* is also an estimate of the connective constant 
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Table 1. Results of cell-to-site and cell-to-cell PSRG calculations of the fractal dimensional- 
ity D of the Witten-Sander model. The expected value is D = 1.67. 

b / b ' 1  2 3 

2 1.7067 
3 1.6740 1.6510 
4 1.67380 1.6421 1.6703 

of the random walk. For the random walks considered in this paper p = Z  exactly, 
where Z is the coordination number of the lattice. We have determined the renormali- 
sation transformation for W' for cell sizes up to b = 6, the results of which are presented 
in table 2. As can be seen, for b = 6 and with a cell-to-bond transformation, we have 
obtained v = 0.5040, in excellent agreement with the exact value of 4. The connective 
constant p = 1/W* converges more slowly to its exact value of 4 because of the 
truncation that we imposed on equation ( 5 ) .  Previous application of the PSRG method 
to the random walk problems had been restricted to one dimension (HBye and 
Napi6rkowski 1980, Muto 1981). 

Table 2. Results of cell-to-bond PSRG calculations of the exponent U and the connective 
constant p for random walks on a square lattice. The exact results are U = and CL = 4. 

b 2 3 4 5 6 
~ ~~~ 

Y 0.5853 0.5392 0.5215 0.5109 0.5040 
cc 2.8818 3.2938 3.4818 3.6004 3.6813 

We now turn our attention to the ws model on the simple cubic lattice in three 

(10) 

dimensions. For the b = 2 cell we have 

W ' =  w2 +4w3 + 14 w 4 + 5 2  w 5 +  MOW6. 

The corresponding renormalisation transformation for S' is too long to be given here, 
but the fractal dimensionality of the ws model with the b = 2 cell is found to be 
D = 2.31. This must be compared with the Monte Carlo simulation result of Meakin 
(1983) D = 2.51. One may think that larger and larger cells will improve the result 
obtained with the smallest cell. Although it is not possible to determine exactly the 
recursion relations for S' for the b = 3 cell and larger ones, because of the enormous 
number of possible configurations and walks, we show below that we do not expect 
that such a procedure will yield satisfactory and meaningful results for the fractal 
dimensionality D. In fact we believe that this PSRG treatment of the ws model breaks 
down in three- and higher-dimensional lattices. 

It is very easy to calculate the recursion relations for W' for larger cells. For 
example, for b = 3 on a simple cubic lattice in three dimensions we have 

W ' =  W 3 + 6 W 4 + 3 9 W 5 + 1 8 8 W 6 + 9 8 8 W 7 + 4 3 8 0 W 8 + 2 1  471 W 9 + 9 2  742W'O 

+ 4 5 0 6 2 7 W " +  1887 328Wl2+9084 7O0Wl3+37 709 O40Wl4 

+ 1 8 0 7 0 3  717W15+746728 150W16+3570464863W17.  (11) 
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We determined W’ for cells up to b = 5 and the results are presented in table 3. As 
can be seen for the b = 3 cell we already have v = 0.4818 and larger cells decrease v 
further. It may be thought that if we enumerate longer walks the results will improve. 

Table 3. Results of cell-to-bond PSRG calculations of the exponent U and connective 
constant p for random walks on a simple cubic lattice in three dimensions. The exact 
results are U = f and p = 6. 

b 2 3 4 5 

U 0.5236 0.4818 0.4664 0.4423 
/L 4.1356 4.7619 5.0890 5.1312 

We enumerated much longer walks (longer than the maximum number of steps 6’) 
and the results became poorer, i.e. v decreased. Cell-to-cell renormalisation procedure 
did not improve the results either. We do not believe that if we use much larger cells 
this trend will reverse itself and v will increase again and approach its asymptotic 
value of $. But even if this could happen one would have to use several very large 
cells and calculate v and extrapolate the results to an infinite cell. As Reynolds et a1 
(1980) pointed out this procedure is equivalent to the finite-size scaling approach. It 
has been established by BrCzin (1982) that the finite-size scaling approach breaks 
down at and above the upper critical dimensionality of the system considered because 
of singularity of the scaling function. Though there is no Hamiltonian formulation of 
a nearest-neighbour and unbiased random walk (as used here to deduce the fractal 
dimensionality of the ws model), one can conceivably assume that the upper critical 
dimensionality of such a random walk is two (Barber and Ninham 1970), since the 
statistics of the walk do not change qualitatively in dimensions higher than two. Thus 
any attempt to exploit the finite-size scaling approach or one of its equivalents for 
deducing asymptotic properties of the random walk at three and higher dimensions 
by PSRG treatment would fail. Consequently we do not expect to obtain satisfactory 
and meaningful results for the recursion relation for S’ with larger cells, and thus 
the fractal dimensionality D of the ws model. 

As a further test we also determined the recursion relations for W’ for b = 2 and 
3 cells for a simple cubic lattice in four dimensions. For b = 2 we obtained 

W’ = W2+6 W3+29 W4+ 138 W5+637 W6+2898 W’. 

The results for v for cell-to-bond transformation are v = 0.4813 and 0.4438 for b = 2 
and 3 respectively. The cell-to-cell transformation yields v = 0.4410. These results 
support our view expressed above. 

We now investigate briefly a variation of the ws model which might be useful in 
probing the structure of the percolation clusters (for a review of percolation theory 
see Stauffer (1979, 1981)). If the growth process is considered in a lattice in which 
a fraction p of sites (or bonds) have been removed at random, then an interesting 
situation arises. If p > p c  where p c  is the percolation threshold of the lattice, then the 
infinite percolation cluster is compact, i.e. its fractal dimensionality is the same as the 
Euclidean dimensionality of the space embedding the lattice. Thus we may expect 
no fundamental change in the structure of the growing cluster. However, at p = p c  
the lattice is barely connected and the infinite percolation cluster has a ramified 
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structure. Therefore we may expect that the structure of the growing cluster will be 
different from the one above the percolation threshold. Random walks on percolation 
clusters at the percolation threshold are not diffusive, and the fractal dimensionality 
of the walks depends upon the dimensionality of the system (Rammal and Toulouse 
1983, Sahimi and Jerauld 1983). Thus it is possible to investigate the ws model in 
such a system with the PSRG method. 

In this case we need a three-parameter PSRG as opposed to the two-parameter 
one for the growth process on compact clusters that we discussed above. The third 
parameter is the probability p that a site is present in the lattice. Within the PSRG 
framework one has to find p ' ,  the probability that a site in the renormalised cell is 
present. We define a cell to be percolating if and only if it contains a set of connected 
sites that span the cell. Following Reynolds et a1 (1978) we can use several rules to 
define percolation of the cell. We may consider a cell as percolating if a connected 
path of occupied sites exists which spans the cell either horizontally or vertically; we 
call this rule ro.  Rule r l  requires spanning in a particular direction, while rule r2 
requires spanning of the cell in both directions. These rules define the renormalisation 
transformation p '  for site probability p .  We consider all three rules in this paper, 
Because a site in the renormalised cell can become part of the growing cluster if and 
only if it is present with probability p ' ,  the recursion relation for S', the renormalised 
site fugacity, is written as 

where m is the total number of sites in the cell (m = b 2 )  and i the number of present 
sites. A similar procedure is also necessary for W', the renormalised walk fugacity. 

We determined the fractal dimensionality D of the ws model at the site percolation 
threshold of the square lattice for cells of size b = 2 and 3 using the closed form 
formulae for p '  which are given by Reynolds et a1 (1980). The results are listed in 
table 4. As can be seen, the results are insensitive to the different rules that were 
used to determine p ' .  Thus we calculated the fractal dimensionality D of the ws 
model for a cell of size b = 4 using only the recursion relation for p '  that corresponds 
to rule r l .  This value is also listed in table 4 and it is clear that D is decreasing with 
increasing cell size. Reynolds et a1 (1980) showed that the error in the cell-to-site 
transformation results with finite b vanishes as b +CO in the form 

D ( b ) = D + C l / l n b + C z / ( l n b ) 2 .  (14) 

Table 4. Results of cell-to-site and cell-to-cell PSRG calculations of the fractal dimensional- 
ity D of the Witten-Sander model on a percolation cluster at the site percolation threshold 
of the square lattice. 

Rule b b' 1 2 3 

r o  1.714 
2 1.711 

r 2  1.709 
ro 1.691 1.661 

3 1.684 1.660 
12 1.681 1.660 
r l  4 1.672 1.652 1.640 
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We used the data of table 4 to determine the best estimate of D. We obtained 
D = 1.55 which should be compared with D = 1.67 for the growth process on compact 
clusters. This large difference means that the infinite percolation cluster whose fractal 
dimensionality is %= 1.896 at p c  in two dimensions (Stauffer 1981) contains many 
deadend branches whose sites are screened during the growth process, and thus the 
fractal dimensionality D of the ws model is very low at p c .  

In conclusion we have demonstrated that the PSRG treatment of the Witten-Sander 
model of cluster growth is not a useful and consistent method for three- and higher- 
dimensional systems. Even though small cell PSRG yields satisfactory results in two 
dimensions, the applicability of this method to obtain very accurate and meaningful 
estimates of the 'critical' exponents that characterise this model in three and higher 
dimensions is questionable. 

We would like to thank Dr Fereydoon Family for sending us a copy of the paper of 
Family and Gould prior to publication, Dr Barry D Hughes for a critical reading of 
the manuscript, and Professors L E Scriven and H T Davis for useful conversations. 
One of us (MS) would like to thank Dr Family and H Gould, H Nakanishi, P Meakin 
and L Sander for interesting discussions that aroused his curiosity about the Witten- 
Sander model. This work was supported by the US Department of Energy. 

Note added in proof. After this work was accepted we received a preprint by H Nakanishi and F Family 
in which they discussed some other difficulties of the PSRG method of Gould et al. We thank them for 
timely correspondence. 
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